问题标题:
{x=te^t;y=t^2e^t;求d^2y/dx^2|t=0
问题描述:

{x=te^t;y=t^2e^t;求d^2y/dx^2|t=0

田光进回答:
  dy/dx=(dy/dt)/(dx/dt)=(2te^t+t^2e^t)/(e^t+te^t)=(2t+t^2)/(1+t)d^2y/dx^2={d[(2t+t^2)/(1+t)]/dt}/(dx/dt)=(t^2+2t+2)/(1+t)*1/(e^t+te^t)将t=0代入上式可得:d^2y/dx^2|t=0=2
查看更多
数学推荐
热门数学推荐