问题标题:
【用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘的代数式是】
问题描述:

用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘的代数式是

李海山回答:
  n=1.2=2.成立.设n=k时成立:(k+1)(k+2).(k+k)=1*3*...*(2k-1)*2^k.看n=k+1:左边=[(k+1)+1][(k+1)+2]……[(k+1)+(k+1)]=[(k+1)(k+2)……(k+k)](k+1+k)(k+1+k+1)/(k+1)=[1*3*...*(2k-1)*2^k]...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【用数学归纳法证明“(n+1)(n+2).(n+n)=1*3*...*(2n-1)*2^n”时“从k到k+1”左边需要增乘的代数式是】|高中数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元