问题标题:
设函数f(x)=alnx+(1-a)x2/2-bx(a不等于1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0,设函数f(x)=alnx+(1-a)x2/2-bx(a不等于1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0,使得f(x0)
问题描述:

设函数f(x)=alnx+(1-a)x2/2-bx(a不等于1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0,

设函数f(x)=alnx+(1-a)x2/2-bx(a不等于1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,

(1)求b;

(2)若存在x0,使得f(x0)

关永回答:
  这个题考查了导数的几何意义,利用导数研究函数的单调性极值与最值等基础知识与基本技能方法,考查了分类讨论的思想方法,第一问利用导数的几何意义即可得出;第二问中,对a分类讨论,a≤1/2时,(1)f'(x)=a/x+(1-a)x...
查看更多
数学推荐
热门数学推荐