问题标题:
急!两道高中数学题目!如下1、已知x>6时,函数f(x)=a^(x-5),x≤6时,f(x)=(4-a/2)x+4,数列an满足an=f(n)(n是正整数),且数列an是单调递增数列,则实数a的取值范围是?2、在区间【0,1】上(闭区间)任意
问题描述:
急!两道高中数学题目!如下
1、已知x>6时,函数f(x)=a^(x-5),x≤6时,f(x)=(4-a/2)x+4,数列an满足an=f(n)(n是正整数),且数列an是单调递增数列,则实数a的取值范围是?
2、在区间【0,1】上(闭区间)任意取两个实数a,b,则函数f(x)=(1/2)x^3+ax-b在区间【-1,1】(闭区间)上有且仅有一个零点的概率为?
要有解题的思路过程,谢谢!
崔自峰回答:
X》6时,f(x)类似指数函数,要递增,则a>1.x
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日