问题标题:
已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),且当X>1,f(x)>0.求证.f(x)在0到正无穷上为增函数.
问题描述:

已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),且当X>1,f(x)>0.

求证.f(x)在0到正无穷上为增函数.

杜淑光回答:
  it'seasy!   letx1>x2>0,   f(x1)-f(x2)=f((x1/x2)*x2)-f(x2)   =f(x1/x2)+f(x2)-f(x2)   =f(x1/x2)   causex1>x2>0,sox1/x2>1,sof(x1/x2)>0,   sof(x1)-f(x2)>0,thatisf(x1)>f(x2)   f(x)istheincreasingfunctionwhenx>0   done   whenyoudealwithaproblemlikethisyoushouldrefertothequestionandusetheconditionaspossibleasyoucan!
查看更多
英语推荐
热门英语推荐