问题标题:
高一数学证明(sin2α/1+cotα)+(cos2α/1+tanα)=1-sinαcosα证明(sin2α/1+cotα)+(cos2α/1+tanα)=1-sinαcosα2是指数,二次方
问题描述:

高一数学证明(sin2α/1+cotα)+(cos2α/1+tanα)=1-sinαcosα

证明(sin2α/1+cotα)+(cos2α/1+tanα)=1-sinαcosα

2是指数,二次方

陈松林回答:
  1   sin^2α/(1+cotα)+cos^2α/(1+tanα)   =sin^2α·sinα/(sinα+cosα)+cos^2α·cosα/(cosα+sinα)   =(sin^3α+cos^3α)/(sinα+cosα)   =(sinα+cosα)(sin^2α-sinα·cosα+cos^2α)/(sinα+cosα)   =sin^2α-sinα·cosα+cos^2α   =1-sinαcosα   2   tanαsina/(tanα-sina)   =tanαsina/(sinα/cosα-sina)   =(sinα/cosα)/(1/cosα-1)   =sinα/(1-cosα)   =1/tan(α/2);   (tanα+sinα)/tanαsinα   =((sinα/cosα)+sinα)/tanαsinα   =((1/cosα)+1)/tanα   =((1/cosα)+1)·cosα/tanα·cosα   =(1+cosα)/sinα   =1/tan(α/2);   ∴左=右;   tanαsina/(tanα-sina)=(tanα+sinα)/tanαsinα   3   (1-sin^4α-cos^4α)/(1-sina^6α-cos^6α)   =[1-(sin^2α+cos^2α)^2+2sin^2α·cos^2α]/[1-(sin^2α+cos^2α)(sin^4α-sin^2α·cos^2α+cos^4α)]   =[1-1+2sin^2α·cos^2α]/[1-1*(sin^4α+2sin^2α·cos^2α+cos^4α-3sin^2α·cos^2α)]   =2sin^2α·cos^2α/[1-(sin^2α+cos^2α)^2+3sin^2α·cos^2α]   =2sin^2α·cos^2α/[1-1+3sin^2α·cos^2α]   =2/3   看看怎么样?
查看更多
数学推荐
热门数学推荐