问题标题:
【∫cos2x/(1+sinxcosx)dx求详解.】
问题描述:

∫cos2x/(1+sinxcosx)dx求详解.

寇蔚回答:
  Letu=1+sin(x)cos(x)=1+(1/2)sin(2x)   anddu=cos(2x)dx→dx=du/cos(2x)   So∫cos(2x)/(1+sin(x)cos(x))dx   =∫1/udu   =ln|u|+C   =ln|1+sin(x)cos(x)|+C   or=ln|sin(2x)+2|+C
耿峰回答:
  anddu=cos(2x)dxwhy?1/2sin2xDX1/2怎么消失了呢?
寇蔚回答:
  du=d[1+(1/2)sin(2x)]=0+1/2*cos(2x)*(2x)'=1/2*cos(2x)*2=cos(2x)Doyouunderstand?Ifnot,plzaskmeagain.
查看更多
数学推荐
热门数学推荐