问题标题:
经过原点且与曲线y=(x+9)/(x+5)相切的切线方程是什么?这道题我设了y=kx+b联立用判别式来做的x+y=0或x+25y=0但是是错的,为什么?
问题描述:
经过原点且与曲线y=(x+9)/(x+5)相切的切线方程是什么?
这道题我设了y=kx+b联立用判别式来做的
x+y=0或x+25y=0
但是是错的,为什么?
陶声详回答:
导数法:
y=(x+9)/(x+5)
y'=[(x+5)-(x+9)]/(x+5)²
=-4/(x+5)²
设切点为(s,t),t=(s+9)/(s+5)①
则斜率k=-4/(s+5)²②
又过原点,t=ks③
∴-4s/(s+5)²=(s+9)/(s+5)
∴-4s=(s+9)(s+5)
s²+18s+45=0
s=-3,或s=-15
s=-3时,k=-1,切线方程为x+y=0
s=-15时,k=-1/25,切线方程为x+25y=0
你的结果是对的呀
y=(x+9)/(x+5)
y=kx
kx(x+5)=x+9
kx²+(5k-1)x-9=0
k≠0,Δ=(5k-1)²+45k=0
25k²+35k+1=0
解得k=-1,或k=-1/25
没有问题呀
查看更多