问题标题:
【我们数学零点学案上最后一板有一些规律总结,有一些部分不太肯定.希望各位指教指教.f(x)=ax^2+bx+c,使得0=a^x2+bx+c1、方程的根一正一负,根据伟达定理推导出:x1*x2<0,则c/a<0.2、方程有两个根,x】
问题描述:
我们数学零点学案上最后一板有一些规律总结,有一些部分不太肯定.希望各位指教指教.
f(x)=ax^2+bx+c,使得0=a^x2+bx+c
1、方程的根一正一负,根据伟达定理推导出:x1*x2<0,则c/a<0.
2、方程有两个根,x1>k,x2<k,推出a*f(k)<0.
3、方程只有一个根在区间(k1,k2)内,则f(k1)*f(k2)<0
4、k1<x1<k2≤p1<x2<p2,推出a>0,f(k1)>0,f(k2)小于0,f(p1)<0
f(p2)>0(a<0时则相反)
我的问题是:以上这些规律总结都没有考虑到根的判别式Δ是否大于等于0,那么在这几种情况中是否需要考虑呢?如果不需要考虑,那么是否总会有解?
高凤兰回答:
如果Δ
查看更多