问题标题:
x7+1因式分解,
问题描述:

x7+1因式分解,

马启波回答:
  x^7+1   首先增加一次项   =x^7-x+x+1   =x(x^6-1)+(x+1)   接着做平方差、立方和、立方差分解   =x(x'"-1)(x"'+1)+(x+1)   =x(x-1)(x"+x+1)(x+1)(x"-x+1)+(x+1)   提取公因式(x+1)   =(x+1)[x(x-1)(x"+1+x)(x"+1-x)+1]   =(x+1)[x(x-1)(x^4+2x"+1-x")+1]   再用平方差相乘   =(x+1)[(x"-x)(x^4+x"+1)+1]   =(x+1)[x^6+x^4+x"-x^5-x^3-x+1]   =(x+1)(x^6-x^5+x^4-x"'+x"-x+1)   或者增加三次项   =x^7-x"'+x"'+1   =x"'(x^4-1)+(x+1)(x"-x+1)   =x"'(x"-1)(x"+1)+(x+1)(x"-x+1)   =x"'(x-1)(x+1)(x"+1)+(x+1)(x"-x+1)   =(x+1)[x"'(x-1)(x"+1)+(x"-x+1)]   =(x+1)[x"'(x"'-x"+x-1)+x"-x+1]   =(x+1)(x^6-x^5+x^4-x^3+x"-x+1)   增加四次项也行   =x^7+x^4-x^4+1   =x^4(x"'+1)-(x^4-1)   =x^4(x+1)(x"-x+1)-(x"-1)(x"+1)   =(x+1)(x^6-x^5+x^4)-(x+1)(x-1)(x"+1)   =(x+1)[(x^6-x^5+x^4)-(x"+1)(x-1)]   =(x+1)[(x^6-x^5+x^4)-(x"'-x"+x-1)]   =(x+1)(x^6-x^5+x^4-x"'+x"-x+1)   还可以增加六次项   =x^7+x^6-x^6+1   =x^6(x+1)-(x^6-1)   =x^6(x+1)-(x"'+1)(x"'-1)   =x^6(x+1)-(x+1)(x"+1-x)(x"+1+x)(x-1)   =x^6(x+1)-(x+1)(x^4+2x"+1-x")(x-1)   =(x+1)[x^6-(x^4+x"+1)(x-1)]   =(x+1)[x^6-(x^5+x^3+x-x^4-x"-1)]   =(x+1)[x^6-x^5-x^3-x+x^4+x"+1]   =(x+1)(x^6-x^5+x^4-x^3+x"-x+1)   总之,7=6+1=2X3+1   还有,7=4+3=2X2+3   利用一次项、三次项、四次项、六次项做变化   都可以使用平方差、立方和、立方差,进行分组分解   可是二次项、五次项就不行了   这样看来,还是利用四次项做变化最方便
查看更多
数学推荐
热门数学推荐