问题标题:
【运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非】
问题描述:

运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7

运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4,a1a5+a2a6,a1a7+a2a8,a3a5+a4a6,a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。

盛大树回答:
  z1=a1+ia2   z2=a3+ia4   z3=a5+ia6   z4=a7+ia8   若a1a3+a2a4
查看更多
数学推荐
热门数学推荐