问题标题:
设数列{an}的前n项和为Sn,已知a1=1,a2=2,an+2=3Sn-Sn+1+3,n∈N*,(Ⅰ)证明an+2=3an;(Ⅱ)求Sn.
问题描述:

设数列{an}的前n项和为Sn,已知a1=1,a2=2,an+2=3Sn-Sn+1+3,n∈N*,

(Ⅰ)证明an+2=3an;

(Ⅱ)求Sn.

刘绍忠回答:
  (Ⅰ)证明:当n≥2时,由an+2=3Sn-Sn+1+3,可得an+1=3Sn-1-Sn+3,两式相减,得an+2-an+1=3an-an+1,∴an+2=3an,当n=1时,有a3=3S1-S2+3=3×1-(1+2)+3=3,∴a3=3a1,命题也成立,综上所述:an+2=3an;(Ⅱ)由(...
查看更多
数学推荐
热门数学推荐