问题标题:
问一道数学题cos(π/7)+cos(3π/7)+cos(5π/7)=?
问题描述:

问一道数学题

cos(π/7)+cos(3π/7)+cos(5π/7)=?

李光炀回答:
  (方法一)   cos(π/7)+cos(3π/7)+cos(5π/7)   =2sin(π/7)(cos(π/7)+cos(3π/7)+cos(5π/7))/2sin(π/7)   =(sin(2π/7)+sin(4π/7)-sin(2π/7)+sin(6π/7)-sin(4π/7))/2sin(   π/7)   =sin(6π/7)/2sin(π/7)   =1/2   类似地可以证明另一个式子   (方法二)   设z=cos(π/(2n+1))+isin(π/(2n+1))   则z^(2n+1)=cosπ+isinπ=-1(棣莫佛公式)   则z+z^3+z^5+...+z^(2n-1)=z(1-Z^2n)/(1-z^2)   =(z+1)/(1-z^2)=1/(z+1)   将z=cos(π/(2n+1))+isin(π/(2n+1))代入得:   1/(z+1)=1/(1+cos(π/(2n+1))+isin(π/(2n+1)))   =(1+cos(π/(2n+1))-isin(π/(2n+1))/(2+2cos(π/(2n+1))   =1/2-isin(π/(2n+1))/(2+2cos(π/(2n+1))   得用复数相等的定义:   可得:cos[pai/(2n+1)]+cos[pai*3/(2n+1)]+.   +cos[pai*(2n-1)/*(2n+1)]=0.5   将n=3代入即可得到   cos(pai/7)+cos(pai*3/7)+cos(pai*5/7)=0.5
查看更多
数学推荐
热门数学推荐