问题标题:
求一个正交变换,化二次型为标准形f(X1,X2,X3)=(X1)²+(X2)²+(X3)²+4(X1)(X2)+4(X1)(X3)+4(X2)(X3)
问题描述:
求一个正交变换,化二次型为标准形
f(X1,X2,X3)=(X1)²+(X2)²+(X3)²+4(X1)(X2)+4(X1)(X3)+4(X2)(X3)
孙世魁回答:
f的矩阵A=122212221|A-λE|=(5-λ)(1+λ)^2.所以A的特征值为5,-1,-1(A-5E)X=0的基础解系为:a1=(1,1,1)'(A+E)X=0的基础解系为:a2=(1,-1,0)',a3=(1,0,-1)'将a2,a3正交化得b2=(1,-1,0)',b3=...
查看更多