问题标题:
f'(x.)=0是f(x)在x=x.处有极值的既不充分也不必要条件?(高中数学)为什么?如果已经有f(x)在x=x.处有极值,为什么不能推出f'(x.)=0?
问题描述:

f'(x.)=0是f(x)在x=x.处有极值的既不充分也不必要条件?(高中数学)

为什么?

如果已经有f(x)在x=x.处有极值,为什么不能推出f'(x.)=0?

方振和回答:
  f'(x0)=0,不一定推出f(x)在x=x0处有极值的反例f(x)=x^3,在x=0是f'(0)=0但却不是极值点f(x)在x=x0处有极值也不一定推出f'(x0)=0反例f(x)=|x|,x=0是极小值但f'(x)在x=0不可导的如果f(x)在x=x0处有极值且可导,...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《f'(x.)=0是f(x)在x=x.处有极值的既不充分也不必要条件?(高中数学)为什么?如果已经有f(x)在x=x.处有极值,为什么不能推出f'(x.)=0?|高中数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元