问题标题:
【已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.   (1)求数列an,bn;(2)设bn的前n项和为Bn,试比较1/B1+1/B2+1/B3+...+1/Bn与2的大小】
问题描述:
已知数列an的通项为an,前n项和为Sn,且an是Sn与2的等差中项;数列bn中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (1)求数列an,bn;(2)设bn的前n项和为Bn,试比较1/B1+1/B2+1/B3+...+1/Bn与2的大小;(3)设Tn=b1/a1+b2/a2+b3/a3+...+bn/an,若对一切正整数n,Tn小于c(c属于Z)恒成立,求c的最小值.
丁宝回答:
(1)an是Sn与2的等差中项即a1=2sn=2an-2所以s(n-1)=2a(n-1)-2an=sn-s(n-1)=2a(n-1)所以an为等比数列公比为2首项为2则an=2^n而点P(bn,bn+1)在直线x-y+2=0上则bn-bn+1+2=0bn+1-bn=2则bn为等差数列首项...
查看更多