问题标题:
【已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少】
问题描述:

已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少

和统回答:
  因为f(n)=cosnπ/4   所以对于任意k为非负整数   f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)   =cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)   +cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)   =cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4   =cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1   =cosπ/4+cos3π/4+cos5π/4+cos7π/4   =0+0   =0   所以f(1)+f(2)+f(3)+……+f(8)=0   f(9)+f(10)+f(11)+……+f(16)=0   ……   f(89)+f(90)+f(91)+……+f(96)=0   所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)   =f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)   =f(1)+f(2)+f(3)+f(4)   =cosπ/4+cos2π/4+cos3π/4+cos4π/4   =√2/2+0-√2/2-1   =-1
查看更多
数学推荐
热门数学推荐