问题标题:
已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A
问题描述:

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.

胡自洁回答:
  联立y=x2与y=x+2得xA=-1,xB=2,   则AB中点Q(12,52)
查看更多
其它推荐
热门其它推荐