问题标题:
【向量a=(cos3/2x,sin3/2x)向量b=(cosx/2,-sinx/2)x属于[0,派/2]求向量a*b|a+b|】
问题描述:
向量a=(cos3/2x,sin3/2x)向量b=(cosx/2,-sinx/2)x属于[0,派/2]求向量a*b|a+b|
毛奇回答:
a·b=cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)=cos(3x/2+x/2)=cos2x
|a+b|^2=[cos(3x/2)+cos(x/2)]^2+[sin(3x/2)-sin(x/2)]^2
=1+1+2[cos(3x/2)cos(x/2)-sin(3x/2)sin(x/2)]
=2+2cos(2x)=4(cosx)^2
|a+b|=2cosx
查看更多