问题标题:
【设函数f(x)=a*b,其中向量a=(2sin(π/4+x),cos2x),b=(sin(π/4+x),-根3),x属于R,求:1.函数f(x)的单调递增区间2.当x属于[0,π/2]时,求函数f(x)的值域】
问题描述:
设函数f(x)=a*b,其中向量a=(2sin(π/4+x),cos2x),b=(sin(π/4+x),-根3),x属于R,
求:1.函数f(x)的单调递增区间
2.当x属于[0,π/2]时,求函数f(x)的值域
杜炤回答:
f(x)=a*b=2sin(x+π/4)cos(x+π/4)-√3cos2x=sin(2x+π/2)-√3cos2x=(1-√3)cos2x1.单增区间为2x∈[2kπ-π/2,2kπ+π/2]x∈[kπ-π/4,kπ+π/4]2.x属于[0,π/2]时,2x∈[0,π]f(x)的值域为[1-√3,√3-1]...
陆祖康回答:
b=(sin(π/4+x),-根3),这个是负根3不是减三,,,
杜炤回答:
对不起,今天网速太慢我知道是负根号3只是前面写错了f(x)=a*b=2sin(x+π/4)sin(x+π/4)-√3cos2x=1-cos(2x+π/2)-√3cos2x=1+sin2x-√3cos2x=2sin(2x-π/3)+1增区间2x-π/3∈[2kπ-π/2,2kπ+π/2]即x∈[kπ-π/12,kπ+5π/12]2.x∈[0,π/2],2x-π/3∈[-π/3,2π/3],sin(2x-π/3)∈[-√3/2,1],∴f(x)的值域为[1-√3,3].
查看更多