问题标题:
证明:点P(x0,y0)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)外部的充要条件是xo^2/a^2+yo^2/b^2>1rt
问题描述:

证明:点P(x0,y0)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)外部的充要条件是xo^2/a^2+yo^2/b^2>1

rt

阮海波回答:
  充分性:点P(x0,y0)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)外部,就有P(x0,y0)在两焦点的距离和大于2a,.根据距离公式可以推出xo^2/a^2+yo^2/b^2>1.   必要性:若点P(x0,y0),满足xo^2/a^2+yo^2/b^2>1,按照充分性的计算结果反算出P(x0,y0)在两焦点的距离和大于2即可.   具体过距离计算不复杂.
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《证明:点P(x0,y0)在椭圆x^2/a^2+y^2/b^2=1(a>b>0)外部的充要条件是xo^2/a^2+yo^2/b^2>1rt|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元