问题标题:
抛物线的证明题过抛物线y^2=2px(p>0)的焦点的一条直线与它交与P,Q点,过P和此抛物线顶点的直线与准线的交于M点,证明直线MQ平行于此抛物线的对称轴
问题描述:

抛物线的证明题

过抛物线y^2=2px(p>0)的焦点的一条直线与它交与P,Q点,过P和此抛物线顶点的直线与准线的交于M点,证明直线MQ平行于此抛物线的对称轴

孙雅明回答:
  证明:易知,F(p/2,0),抛物线对称轴为y轴,即直线y=0.准线为x=-p/2.可设P(2pm^2,2pm),Q(2pn^2,2pn).M(-p/2,y).由P,F,Q共线知,4mn=-1.再由P,O,M共线知,y=-p/(2m).===>y=2pn.===>M(-p/2,2pn),Q(2pn^2,2pn).===>直线MQ的...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《抛物线的证明题过抛物线y^2=2px(p>0)的焦点的一条直线与它交与P,Q点,过P和此抛物线顶点的直线与准线的交于M点,证明直线MQ平行于此抛物线的对称轴|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元