问题标题:
如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+3,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的
问题描述:

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+

3,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2.

(1)直接写出点C1、C2的坐标;

(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);

(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.

①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;

②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

胡玉梅回答:
  (1)点C1、C2的坐标分别为(3-3,-2)、(3-3,2).(2分)(2)能通过一次旋转将△ABC旋转到△A2B2C2的位置,所旋转的度数为180°;(4分)(3)①当△ABC向上平移2个单位时,△A1B1C1与△A2B2C2完全重合,此时点...
查看更多
数学推荐
热门数学推荐