问题标题:
1/(2×4)+1/(4×6)+1/(6×8)+1/(8×10)+·····+1/(2008×2010)的算法(详细过程),
问题描述:
1/(2×4)+1/(4×6)+1/(6×8)+1/(8×10)+·····+1/(2008×2010)的算法(详细过程),
孙增国回答:
原式=1/4{4×1/(2×4)+4×1/(4×6)+……4×1/2008×2010}
=1/4{1/1×2+1/2×3+……1/1004×1005}
=1/4×(1004/1005)
=251/1005
解释一下
4×1/(2×4)+4×1/(4×6)+……4×1/2008×2010把4分成2×2分别和分母的两个偶数约分
{1/1×2+1/2×3+……1/1004×1005}这是都很熟悉的了得n/n+1
查看更多