问题标题:
求导函数(1-x^2)^(1/2)的原函数.
问题描述:

求导函数(1-x^2)^(1/2)的原函数.

刘艳君回答:
  y'=(1-x^2)^(1/2)   dy/dx=(1-x^2)^(1/2)   dy=(1-x^2)^(1/2)dx   两边同时积分   ∫dy=∫(1-x^2)^(1/2)dx   y=∫(1-x^2)^(1/2)dx   令t=sinxt=arcsinx   y=∫(1-sin^2t)^(1/2)dsint   =∫costdsint   =∫cos^2tdt   =∫(1+cos(2t))/2dt   =t/2+1/4∫cos(2t)d2t   =t/2+sin(2t)/4+C   =(t+sintcost)/2+C   =(t+sint(1-sin^2t)^0.5)/2+C   代入t=arcsinx   =(arcsinx+sinarcsinx(1-sin^2arcsinx)^0.5)/2+C   =(arcsinx+x(1-x^2)^0.5)/2+C
查看更多
数学推荐
热门数学推荐