问题标题:
如下图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AC于F,DE⊥AC于E,M为BC的中点判断试△MEF是什么形状的三角形,并写出作答过程在图下面.
问题描述:
如下图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任意一点,DF⊥AC于F,DE⊥AC于E,M为BC的中点
判断试△MEF是什么形状的三角形,并写出作答过程在图下面.
程建华回答:
△MEF是等腰直角三角形
证明:连结AM
∵AB=AC,∠A=90°,∠B=45°
又DF⊥AB,∴∠BDF=∠B=45°
∴BF=DF,∴BF=AE
∵AB=AC,∠A=90°,M为BC的中点
∴∠MAE=∠B=45°,且AM=BM
在△AEM和△BMF中
AE=BF,∠MAE=∠B,AM=BM
∴△AEM≌△BMF
∴ME=MF,∠AME=∠BMF
∴∠EMF=∠AME+∠AMF=∠BMF+∠AMF=90°
∴△MEF是等腰直角三角形
查看更多