问题标题:
【祖冲之除了确定圆周率之外,在数学领域还有哪些成就?】
问题描述:

祖冲之除了确定圆周率之外,在数学领域还有哪些成就?

冯锦春回答:
  祖冲之(ZǔChōngzhī,公元429年─公元500年)是我国杰出的数学家,科学家.南北朝时期人,汉族人,字文远.生于未文帝元嘉六年,卒于齐昏侯永元二年.祖籍范阳郡遒县(今河北涞水县).先世迁入江南,祖父掌管土木建筑,父亲学识渊博.祖冲之从小接受家传的科学知识.青年时进入华林学省,从事学术活动.一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山县东北)令、谒者仆射、长水校尉等官职.其主要贡献在数学、天文历法和机械三方面.在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了.《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就.这一纪录直到15世纪才由阿拉伯数学家卡西打破.祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现.祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式.在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法.在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等.此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》.是历史上少有的博学多才的人物.为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”.祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(Л)值计算到小数点后七位,即3.1415926到3.1415927之间.他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”.他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本.他编制的《大明历》,第一次将“岁差”引进历法.提出在391年中设置144个闫月.推算出一回归年的长度为365.24281481日,误差只有50秒左右.他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家.重新造出早已失传的指南车、千里船等巧妙机械多种.此外,他对音乐也有研究.著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失.[编辑本段]【人物生平】从公元42O年东晋灭亡到589年隋朝统一全国的一百七十年中间,我国历史上形成了南北对立的局面,这一时期称作南北朝.南朝从公元42O年东晋大将刘裕夺取帝位,建立宋政权开始,经历了宋、齐、梁、陈四个朝代.同南朝对峙的是北朝,北朝经历了北魏、东魏、西魏,北齐、北周等朝代.祖冲之是南朝人,出生在宋,死的时候已是南齐时期了.当时由于南朝社会比较安定,农业和手工业都有显著的进步,经济和文化得到了迅速发展,从而也推动了科学的前进.因此,在这一段时期内,南朝出现了一些很有成就的科学家,祖冲之就是其中最杰出的人物之一.祖冲之的原籍是范阳郡遒县(今河北涞水县).在西晋末年,祖家由于故乡遭到战争的破坏,迁到江南居住.祖冲之的祖父祖昌,曾在宋朝政府里担任过大匠卿,负责主持建筑工程,是掌握了一些科学技术知识的;同时,祖家历代对于天文历法都很有研究.因此祖冲之从小就有接触科学技术的机会.祖冲之对于自然科学和文学、哲学都有广泛的兴趣,特别是对天文、数学和机械制造,更有强烈的爱好和深入的钻研.早在青年时期,他就有了博学多才的名声,并且被政府派到当时的一个学术研究机关——华林学省,去做研究工作.后来他又担任过地方官职.公元461年,他任南徐州(今江苏镇江)刺史府里的从事.464年,宋朝政府调他到娄县(今江苏昆山县东北)作县令.祖冲之在这一段期间,虽然生活很不安定,但是仍然继续坚持学术研究,并且取得了很大的成就.他研究学术的态度非常严谨.他十分重视古人研究的成果,但又决不迷信古人.用他自己的话来说,就是:决不“虚推(盲目崇拜)古人”,而要“搜炼古今(从大量的古今著作中吸取精华)”.一方面,他对于古代科学家刘歆〔xin欣〕、张衡、阚[kan看]泽、刘徽、刘洪等人的著述都作了深入的研究,充分吸取其中一切有用的东西.另一方面,他又敢于大胆怀疑前人在科学研究方面的结论,并通过实际观察和研究,加以修正补充,从而取得许多极有价值的科学成果.在天文历法方面,他所编制的《大明历》,是当时最精密的历法.在数学方面,他推算出准确到六位小数的圆周率,取得了当时世界上最优秀的成绩.
查看更多
数学推荐
热门数学推荐