问题标题:
【已知tana.tanb是方程x²+3x-1=0的两根,求sin²(a+b)+sin2(a+b)】
问题描述:
已知tana.tanb是方程x²+3x-1=0的两根,求sin²(a+b)+sin2(a+b)
李海洲回答:
解由tana.tanb是方程x²+3x-1=0的两根
则tana+tanb=-3
tanatanb=-1
则tan(a+b)=[tana+tanb]/[1-tanatanb]
=(-3)/[1-(-1)]
=-3/2
故sin^2(a+b)+sin2(a+b)
=1/2[1+cos2(a+b)]+sin2(a+b)
=1/2+1/2cos2(a+b)+sin2(a+b)
=1/2+1/2[1-tan^2(a+b)]/[1+tan^2(a+b)]+2tan^2(a+b)/[1+tan^2(a+b)].(此处用了万能公式)
=1/2+1/2[1-9/4]/[1+9/4]+2(-3/2)/[1+9/4]
=1/2+1/2(-5/13)-3/(13/4)
=-3/13
或者sin^2(a+b)+sin2(a+b)
=[sin^2(a+b)+sin2(a+b)]/1
=[sin^2(a+b)+sin2(a+b)]/[cos^2(a+b)+sin^2(a+b)].分子分母同时除以cos^2(a+b)
=[tan^2(a+b)+2tan(a+b)]/[1+tan^2(a+b)]
=[(-3/2)^2+2(-3/2)]/[1+(-3/2)^2]
=[9/4-3]/(13/4)
=[9-12]/13
=-3/13
查看更多