问题标题:
(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是______.
问题描述:
(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是______.
卢慧琼回答:
由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF最小,
连接BD,
∵菱形ABCD中,∠A=60°,
∴AB=AD,则△ABD是等边三角形,
∴BD=AB=AD=3,
∵⊙A、⊙B的半径分别为2和1,
∴PE=1,DF=2,
∴PE+PF的最小值是3.
故答案为:3.
查看更多