问题标题:
【旋转变换是世界运动变化的简捷形式之一,也是数学问题中一种重要的思想方法.解与图形的旋转相关的问题常用到全等三角形的知识,而利用旋转过程中的不变量、不变性是解决问题的关】
问题描述:
旋转变换是世界运动变化的简捷形式之一,也是数学问题中一种重要的思想方法.解与图形的旋转相关的问题常用到全等三角形的知识,而利用旋转过程中的不变量、不变性是解决问题的关键.请你选择其中一题进行解答.
(1)如图1,已知P是等边三角形ABC内一点,PB=2,PC=1,∠BPC=150°,求PA的长;
(2)如图2,已知O是等边△ABC内的一点,∠AOB、∠BOC、∠AOC的角度之比为6:5:4.求在以OA、OB、OC为边的三角形中,此三边所对的角度之比.
金澔回答:
(1)如图,连接PP′,将△BPC绕C点顺时针旋转60°到△AP′C的位置,由旋转的性质,得CP=CP′,∴△PP′C为等边三角形,由旋转的性质可知∠AP′C=∠BPC=150°,∴∠AP′P=150°-60°=90°,又∵PP′=PC=1,AP′=BP=2...
查看更多