问题标题:
直线段AB的长为L,C为AB上的一个动点,分别以AC和BC为斜边,在AB的同侧作两个等腰直角三角形,记为△ACD和△BCD’,那么DD'的长的最小值为_____.(麻烦写出过程,)
问题描述:

直线段AB的长为L,C为AB上的一个动点,分别以AC和BC为斜边,在AB的同侧作两个等腰直角三角形,记为△ACD和△BCD’,那么DD'的长的最小值为_____.(麻烦写出过程,)

卢志舟回答:
  画个图就知道,角DCD'为直角,故斜边的两直角边的平方开根号,DD'=根号下sin45*AC的平方+sin45AB的平方=根号下1/2(AC^2+AB^2)=根号下1/2{   (AB+AC)^2-2AB*AC}   AB*AC在AB=AC时最大   故   D'D这时最小,AB+AC=L,带入   =根号下1/2(L^2+1/2L)
查看更多
数学推荐
热门数学推荐