问题标题:
【在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0).已知点P从点A出发沿着AB路线向点B运动,点Q从点C出发沿CO路线向点O运动,运动速度都是每秒2个单位长度,运动时间为t秒.(1】
问题描述:
在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0).已知点P从点A出发沿着AB路线向点B运动,点Q从点C出发沿CO路线向点O运动,运动速度都是每秒2个单位长度,运动时间为t秒.
(1)当t=4.5秒时,判断四边形AQCB的形状,并说明理由.
(2)当四边形AOQB是矩形时,求t的值.
(3)是否存在某一时刻,使四边形PQCB是菱形?若存在,求出t的值;若不存在,请说明理由.
罗建强回答:
(1)结论:四边形AQCB是平行四边形.
理由:∵A(0,4),B(9,4),
∴AB∥OC,AB=9,
当t=4.5秒时,CQ=2t=9,
∴AB=CQ,
∴四边形AQCB是平行四边形.
(2)当四边形AQCB是矩形时,有AB=OQ,
即9=12-2t,
∴t=1.5.
∴t=1.5s时,四边形AQCB是矩形.
(3)当PB=CQ时,四边形PQCB是平行四边形,
即9-2t=2t,
∴t=94
查看更多