问题标题:
在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.(1)如图1,当点M在AB边上时,连接BN:求证:△ABN≌△ADN;(2)如图2,若∠ABC=90°,记点M运动所经过的路
问题描述:

在边长为6的菱形ABCD中,动点M从点A出发,沿A⇒B⇒C向终点C运动,连接DM交AC于点N.

(1)如图1,当点M在AB边上时,连接BN:求证:△ABN≌△ADN;

(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

盛莉回答:
  (1)证明:在菱形ABCD中,AB=AD,∠BAN=∠DAN,在△ABN和△ADN中,AB=AD∠BAN=∠DANAN=AN,∴△ABN≌△ADN(SAS);(2)∵∠ABC=90°,∴菱形ABCD是正方形,∴当x=6时,点M与点B重合,AN=DN,△ADN为等腰三角形...
查看更多
其它推荐
热门其它推荐