问题标题:
求一道数学题详解正项等比数列{an}满足a7=a6+2a5,如果存在两项am和an,使(am*an)^1/2=4a1,求(1/m)+(4/n)的最小值.(注明:*是乘号,1/2是根号)
问题描述:
求一道数学题详解
正项等比数列{an}满足a7=a6+2a5,如果存在两项am和an,使(am*an)^1/2=4a1,求(1/m)+(4/n)的最小值.
(注明:*是乘号,1/2是根号)
华兆麟回答:
a7=a6+2a5
===>a1*q^6=a1^q^5+2a1*q^4
===>q²=q+2
===>q²-q-2=0
===>(q+1)(q-2)=0
===>q=-1,或者q=2
因为各项为正,则q>0
所以,q=2
已知√(am*an)=4a1
===>am*an=16a1²
===>[a1*2^(m-1)]*[a1*2^(n-1)]=16a1²
===>2^(m+n-2)=16=2^4
===>m+n=6
所以,(1/m)+(4/n)
=(1/6)*[(m+n)/m]+(2/3)[(m+n)/n]
=(1/6)[1+(n/m)]+(2/3)[1+(m/n)]
=(1/6)+(2/3)+(n/6m)+(2m/3n)
≥(5/6)+2√[(n/6m)*(2m/3n)]
=(5/6)+(2/3)
=3/2
即,(1/m)+(4/n)有最小值3/2
查看更多