问题标题:
过双曲线x^2/3-y^2/6=1的右焦点F2,倾斜角为30°的直线交双曲线于A,B两点,求绝对值AB
问题描述:

过双曲线x^2/3-y^2/6=1的右焦点F2,倾斜角为30°的直线交双曲线于A,B两点,求绝对值AB

刘锁兰回答:
  a^2=3   b^2=6   c^2=a^2+b^2=3+6=9   c=3   右焦点坐标是(3,0)   k=tan30=√3/3   所以直线方程是   y-0=√3/3(x-3)   y=√3/3(x-3)代入双曲线方程得   x^2/3-[√3/3(x-3)]^2/6=1   2x^2-[1/3*(x^2-6x+9)]=6   6x^2-x^2+6x-9=18   5x^2+6x-27=0   xa+xb=-6/5   xaxb=-27/5   (xa-xb)^2=(xa+xb)^2-4xaxb   =36/25+108/5   =576/25   (ya-yb)^2=(√3/3)^2(xa-3-xb+3)^2   =1/3*576/25   =192/25   |AB|=√[(xa-xb)^2+(ya-yb)^2]   =√(576/25+192/25)   =16√3/5
查看更多
数学推荐
热门数学推荐