问题标题:
有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体.有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体
问题描述:

有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体.

有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体在xOy面上的投影.标准答案是说想象两立体的形状,可知在xOy面上的投影方程为x^2+y^2=ax,z=0

可是我觉得很奇怪啊,为什么是x^2+y^2+z^2=a^2投影下来的圆可以覆盖x^2+y^2=ax的呀,怎么是后者为投影方程呢?

齐亚莉回答:
  关键是这个的形状:x^2+y^2-ax=0x^2-ax+y^2=0x^2-ax+(a/2)^2+y^2=(a/2)^2(x-a/2)^2+y^2=(a/2)^2这就是x^2+y^2-ax=0的形状,圆心位置不在原点的圆,圆心(a/2,0),半径a/2,总之是柱面它的半径小于a.所以...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体.有一个关于高数空间的问题.求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所围成的立体|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元