问题标题:
如图,已知三角形BAC,三角形DAE为等腰直角三角形.【1】证明:三角形ABC全等三角形DAE.【2】CE垂直BD.
问题描述:
如图,已知三角形BAC,三角形DAE为等腰直角三角形.【1】证明:三角形ABC全等三角形DAE.【2】CE垂直BD.
马帅旗回答:
1)△BAE≌△CAD,
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE.
何凤有回答:
错了
马帅旗回答:
额
查看更多