问题标题:
x-y分之1-x+y分之1)除以x的平方-y的平方分之xy的平方顺便再给我解释下(x-y分之1-x+y分之1)除以x^2-2xy+y^2分之2y.最后答案为2y/(x-y)(x+y)×(x-y)^2/2y=x-y/x+y为什么(x-y分之1-x+y分之1)=2y/(x-y)(x+y)
问题描述:

x-y分之1-x+y分之1)除以x的平方-y的平方分之xy的平方

顺便再给我解释下(x-y分之1-x+y分之1)除以x^2-2xy+y^2分之2y.

最后答案为2y/(x-y)(x+y)×(x-y)^2/2y=x-y/x+y

为什么(x-y分之1-x+y分之1)=2y/(x-y)(x+y)

李兆鹏回答:
  [1/(x-y)-1/(x+y)]/[xy^2/(x^2-y^2)]   =[(x+y-x+y)/(x-y)(x+y)]/[xy^2/(x-y)(x+y)]   =[2y/(x-y)(x+y)]/[xy^2/(x-y)(x+y)]   =2y/(x-y)(x+y)*(x-y)(x+y)/xy^2   =2y/xy^2   =2/xy   [1/(x-y)-1/(x+y)]/[2y/(x^2-2xy+y^2)]   =[(x+y-x+y)/(x-y)(x+y)]/[2y/(x-y)^2]   =2y/(x-y)(x+y)*(x-y)^2/2y   =(x-y)^2/(x-y)(x+y)   =(x-y)/(x+y)
查看更多
数学推荐
热门数学推荐