问题标题:
【已知函数在处取得极大值,在处取得极小值,且.(1)证明a>0;(2)若z=a+2b,求z的取值范围.____】
问题描述:
已知函数在处取得极大值,在处取得极小值,且.
(1)证明a>0;(2)若z=a+2b,求z的取值范围.____
李慧芬回答:
【分析】(1)求出f(x)的导函数,因为函数在x=x1和x=x2取得极值得到:x1,x2是导函数等于0的两个根.表示出导函数,因为x<x1函数为增函数,得到导函数大于0,根据不等式取解集的方法即可得到a的范围;
(2)由0<x1<1<x2<2得到导函数在x=0、2时大于0,导函数在x=1时小于0,得到如图所示的三角形ABC,求出三个顶点的坐标即可得到相应的z值,得到z的取值范围即可.
求出函数f(x)的导函数f'(x)=ax2-2bx+2-b.
(1)由函数题知:x1,x2是f'(x)=0的两个根,
所以f'(x)=a(x-x1)(x-x2).
当x<x1时,f(x)为增函数,f'(x)>0,
由x-x1<0,x-x2<0,得a>0.
(2)由题得:0<x1<1<x2<2等价于,即,
化简得.
此不等式组表示的区域为平面aOb上三条直线:2-b=0,a-3b+2=0,4a-5b+2=0.
所围成的ΔABC的内部,如图所示:
其三个顶点分别为:.
z在这三点的值依次为.
所以z的取值范围为.
【点评】本题考查学生会利用导数研究函数的极值,会利用数形结合法进行简单的线性规划.在解题时学生应注意利用数形结合的数学思想解决问题.
查看更多