问题标题:
求以椭圆x^2/5+y^2/7=1的焦点为顶点,而以椭圆的顶点为焦点的双曲线的标准方程
问题描述:

求以椭圆x^2/5+y^2/7=1的焦点为顶点,而以椭圆的顶点为焦点的双曲线的标准方程

田贵芬回答:
  7>5x^2/b^2+y^2/a^2=1,焦点F在y轴上b^2=5,a^2=7c^2=7-5=2,c=√2F1(0,-√2),F2(0,√2)顶点A1(0,√7),A2(0,-√7)F1为顶点,a'=√2.a'^2=2顶点为焦点,c'=√7,c'^2=7b'^2=c'^2-a'^2=5双曲线方程:y^2/2-x^2/5=1...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《求以椭圆x^2/5+y^2/7=1的焦点为顶点,而以椭圆的顶点为焦点的双曲线的标准方程|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元