问题标题:
高一数学一道有关向量的题以向量OA=向量a,向量OB=向量b作为平行四边形OADB,向量BM=(1/3)向量BC,向量CN=(1/3)向量CD,用向量a,向量b表示向量OM、向量ON、向量MN.怎么算的?步骤?请详细一点
问题描述:
高一数学一道有关向量的题
以向量OA=向量a,向量OB=向量b作为平行四边形OADB,向量BM=(1/3)向量BC,向量CN=(1/3)向量CD,用向量a,向量b表示向量OM、向量ON、向量MN.怎么算的?步骤?请详细一点
高以仁回答:
我觉得你题目中少了什么东西,那个C点是怎么来的
彭静回答:
AB,OD交于点C
高以仁回答:
OM=OB+BM=OB+(1/3)BC=OB+(1/3)*((1/2)*(BO+OA))=b+1/6*(-b+a)=1/6a+5/6bON=OC+CN=1/2*(OA+OB)+(1/3)CD=1/2*(OA+OB)+(1/3)OC=1/2*(OA+OB)+(1/3)*((1/2)*(OB+OA))=1/2(a+b)+1/6(a+b)=2/3(a+b)MN=MO+ON=-(1/6a+5/6b)+(2/3(a+b))=1/2a-1/6b
查看更多