问题标题:
裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题
问题描述:

裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题

裂项相消法求和(1)an=1/(2n+1)(2n+3)(2)an=5/n(n+2)(3)an=1/(n+1)(n+2)(4)an=2/n(n+1)四道题

宋传学回答:
  (1)an=(1/2)[1/(2n+1)-1/(2n+3)],∴a1+a2+……+an=(1/2)[1/3-1/5+1/5-1/7+……+1/(2n+1)-1/(2n+3)]=(1/2)[1/3-1/(2n+3)]=n/(6n+9).先把an裂项,求和时注意消去哪些项,留下哪些项.余者类推.剩下的题目留给您练习....
陈关龙回答:
  你真好心,不会解才提问的、
宋传学回答:
  您可以试试。
查看更多
数学推荐
热门数学推荐