问题标题:
(2013•大兴区一模)已知数列{an},an+1=an+2,a1=1,数列{1anan+1}的前n项和为1837,则n=______.
问题描述:

(2013•大兴区一模)已知数列{an},an+1=an+2,a1=1,数列{1anan+1}的前n项和为1837,则n=______.

陈环回答:
  ∵an+1=an+2,a1=1,∴an+1-an=2,∴数列{an}是以1为首项,以2为公差的等差数列,∴an=1+2(n-1)=2n-1,∴1anan+1=1(2n−1)(2n+1)=12(12n−1−12n+1),∴Sn=12(1−13+13−15+…+12n−1−12n+1)=12(1−12n+1),由数...
查看更多
其它推荐
热门其它推荐