问题标题:
设定义域为R的函数f(x)=|lg|x-1||(x不等于1),0(x=1),则关于的方程f(x)^2+bf(x)+c=0有7个不同实数解的充要条件是()A.b0B.b>0且c
问题描述:
设定义域为R的函数f(x)=|lg|x-1||(x不等于1),0(x=1),则关于的方程f(x)^2+bf(x)+c=0有7个不同实数解的充要条件是()
A.b0B.b>0且c
毕军平回答:
C:b<0且c=0
等价于关于f(x)的方程[f(x)]^2+bf(x)+c=0有2个解,
f(x)=0或f(x)=k>0
f(x)=0时有三个解:x=1
|lg|x-1||=0,lg|x-1|=0,x-1=±1,x=2或0
f(x)=k>0时有四个解
|lg|x-1||=k,lg|x-1|=±k,|x-1|=10^(±k),x-1=±10^(±k),
x=1±10^(±k)
逆过来,如果关于f(x)的方程有两个不等正实根,
则关于x的方程有8个实根,与题意不合.
如果关于f(x)的方程有一个正实根,一个负实根,
则关于x的方程只有4个实根,与题意不合.
如果关于f(x)的方程有一个负实根,一个零根,
则关于x的方程只有三个实根,与题意不合
如果关于f(x)的方程有两个负实根,
则关于x的方程没有实根,与题意不合.
所以关于f(x)的方程必有一个零根与一个正实根,
b>0且c=0
所以关于x的方程[f(x)]^2+bf(x)+c=0有7个不同的实数解的充分必要条件是b<0且c=0.
因为y^2+by+c=0最多两根
如果只有一根,显然f2(x)+bf(x)+c=0最多只有3根
所以y^2+by+c=0必然有两不等根!
因为0≤y=f(x)
如果y^2+by+c=0是两不等正根,则必然f2(x)+bf(x)+c=0有8个不同的实数解
而y=f(x)=0有3根x=1,x=2,x=0
所以必有一根为y=0,c=0(没有的话不可能有7根)
另外一根y=-b>0,-b=lg(x-1),-b=lg(1-x),-b=-lg(x-1),-b=-lg(1-x)
这样可以解出四根,一共7根!所以当b<0且c=0,关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解
查看更多