问题标题:
【一到高一数学题,求解答.已知三角形ABC中,a,b,c分别为角A,B,C所对的边,向量m=(cosA,sinA)向量n=(cosB,sinB),向量m×向量n=根号3sinB-cosC.1、求角A度数2、若a=3求三角形ABC面积最大值第二问怎】
问题描述:
一到高一数学题,求解答.
已知三角形ABC中,a,b,c分别为角A,B,C所对的边,向量m=(cosA,sinA)向量n=(cosB,sinB),向量m×向量n=根号3sinB-cosC.
1、求角A度数
2、若a=3求三角形ABC面积最大值
第二问怎么解答.求解释.
甘登文回答:
mn=(cosA,sinA)(cosB,sinB)=cosAcosB+sinAsinB=√3sinB-cosCcosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB所以,2sinAsinB=√3sinBsinA=√3/2要使三角形面积大,A应该是锐角.(证明见下)cosA=1/2余弦定理a^2=b^2+c^...
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日