问题标题:
设正实数a,b,c满足1/(a+b+1)+1/(b+c+1)+1/(c+a+1)≥1,证明:a+b+c≥ab+bc+ca
问题描述:

设正实数a,b,c满足1/(a+b+1)+1/(b+c+1)+1/(c+a+1)≥1,证明:a+b+c≥ab+bc+ca

韩达回答:
  设t为a,b,c中最小的数.   则   3/(2t+1)>=1/(a+b+1)+1/(b+c+1)+1/(c+a+1)>=1   3/(2t+1)>=1   解得1>=t   则a+b+c>=3t>=ab+bc+ca   证毕
董虹回答:
  看懂了谢谢!
查看更多
数学推荐
热门数学推荐