问题标题:
【如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若BC:AC=1:2,求AE:EB:BD的值(请你直接写出结果)】
问题描述:

如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.

(1)试判断PD与⊙O的位置关系,并说明理由;

(2)若

BC:

AC=1:2,求AE:EB:BD的值(请你直接写出结果);

(3)若点C是弧AB的中点,已知AB=4,求CE•CP的值.

关仲回答:
  (1)PD与⊙O相切.理由如下:连接OP,∵∠ACP=60°,∴∠AOP=120°,而OA=OP,∴∠PAO=∠APO=30°,∵PA=PD,∴∠D=∠PAD=30°,∴∠APD=180°-30°-30°=120°,∴∠OPD=120°-30°=90°,∵OP为半径,∴PD是⊙O的...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
其它推荐
热门其它推荐
付费后即可复制当前文章
《【如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若BC:AC=1:2,求AE:EB:BD的值(请你直接写出结果)】|其它问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元