问题标题:
【如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若BC:AC=1:2,求AE:EB:BD的值(请你直接写出结果)】
问题描述:
如图,以AB为直径的⊙O经过点P,C是⊙O上一点,连接PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若
BC:
AC=1:2,求AE:EB:BD的值(请你直接写出结果);
(3)若点C是弧AB的中点,已知AB=4,求CE•CP的值.
关仲回答:
(1)PD与⊙O相切.理由如下:连接OP,∵∠ACP=60°,∴∠AOP=120°,而OA=OP,∴∠PAO=∠APO=30°,∵PA=PD,∴∠D=∠PAD=30°,∴∠APD=180°-30°-30°=120°,∴∠OPD=120°-30°=90°,∵OP为半径,∴PD是⊙O的...
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日