问题标题:
一道数学题,希望能用简便的方法解答.设x-1/x=3,求x十次方+x八次方+x平方+1除以x十次方+x六次方+x四次方+1的值
问题描述:

一道数学题,希望能用简便的方法解答

.设x-1/x=3,求x十次方+x八次方+x平方+1除以x十次方+x六次方+x四次方+1的值

黄劲回答:
  已知:x-1/x=3,求:(x^10+x^8+x^+1)/(x^10+x^6+x^4+1)的值   x-1/x=3   (x-1/x)^2=x^2+1/x^2-2=9   x^2+1/x^2=11   (x+1/x)^2=x^+2+1/x^2=13   x+1/x=t,则t^2=13   x^3+1/x^3   =(x+1/x)(x^2-1+1/x^2)   =(x+1/x)[(x^2+2+1/x^2)-3]   =(x+1/x)[(x+1/x)^2-3]   =t(13-3)   =10t   x^5+1/x^5   =(x^2+1/x^2)(x^3+1/x^3)-(x+1/x)   =11*10t-t   =109t   (x^10+x^8+x^+1)/(x^10+x^6+x^4+1).上下同除以x^5   =[(x^5+1/x^5)+(x^3+1/x^3)]/[(x^5+1/x^5)+(x+1/x)]   =[109t+10t]/[109t+t]   =119/110
查看更多
数学推荐
热门数学推荐