问题标题:
【命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sinmx的周期小于,试判断p∨q,p∧q,p的真假性.】
问题描述:

命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sinmx的周期小于,试判断p∨q,p∧q,p的真假性.

黄先日回答:
  p∨q为真命题,p∧q为假命题,p为真命题.   对于命题p,当f(x)=|log2x|=0时,log2x=0,即x=1,1∉(1,+∞),故命题p为假命题.对于命题q,y=sinmx的周期T=<,即|m|>4,故m<-4或m>4,故存在,m≥0,使得命题q成立,所以p且q为假命题.故p∨q为真命题,p∧q为假命题,p为真命题.
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sinmx的周期小于,试判断p∨q,p∧q,p的真假性.】|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元