问题标题:
如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD
问题描述:

如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.

(1)求该抛物线的函数解析式;

(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).

①当t=2秒时,判断点P是否在直线ME上,并说明理由;

②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

任德均回答:
  (1)设抛物线的解析式为:y=a(x-2)2+4,则有0=4a+4,∴a=-1,∴抛物线的解析式为:y=-(x-2)2+4;(2)①∵y=-(x-2)2+4,∴当y=0时,-(x-2)2+4=0,∴x1=0,x2=4,∴E(4,0),设直线ME的解析式为:y=kx+b,...
查看更多
数学推荐
热门数学推荐